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Thin-Shell Approach for Elastic Wave Propagation 
in a Pipe with Liquid 
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This paper presents the validity and limitation of the thin-shell  approach for the analysis of 

elastic wave propagation in a pipe with nonviscous liquid. The phase velocities calculated by 

the thin-shell  approach were compared with those calculated by the thick-cylinder approach. In 

contrast to the case of the empty pipe, where only two modes were obtained and the first mode 

was calculated in a limited frequency range, the results for the l iquid-fil led pipe exhibits a large 

number of  modes due to the large number of branches of the apparent liquid mass. Several of 

the lowest modes of the waves in a l iquid-fil led pipe were calculated for various pipe thicknesses 

in a low frequency range. The thin-shell  approach was valid for a reasonable range of  pipe 

thicknesses. 
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1. In troduct ion  

Axisymmetric longitudinal waves in an elastic 

pipe have been used to inspect pipelines (Rose, 

2002) and also to measure fluid properties in a 

pipe (Kim et al., 2003a ; Hwang and Kim, 2004). 

In order to predict the propagation of elastic 

waves and to compare with wave experiments for 

a pipe with a flowing fluid, the development of a 

simplified wave theory is desired in order to 

investigate the fluid flow effect. Experiments for 

guided waves are often reported (Ahn and Nam, 

2003 ; Kim et al., 2003b). 

A fully-elastic approach, which is referred to as 

a thick-cylinder approach hereafter, for axisy- 

mmetric wave propagation has already been de- 
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veloped for an empty cylinder (Gazis, 1959) and 

for a l iquid-fil led cylinder (Sinha et al., 1992; 

Cho and Rose, 1996). Meanwhile, a thin-shell  

approach has been developed as a simplified tool 

for the analysis of wave propagation in a cylin- 

der. For  an empty cylinder, even non-axisy- 

mmetric wave propagation has been described by 

the thin-shell  approach (Junger and Feit, 1986; 

Graft, 199 I). Characteristics of wave propagation 

and energy distribution have been derived for a 

cylinder with internal stationary liquid (Fuller 

and Fahy, 1982) and for a cylinder with internal 

liquid flow (Brevart and Fuller, 1993). The phase 

velocity of  the axisymmetric wave in a water- 

filled cylinder has been calculated from the equa- 

tions derived by the thin-shell  approach (Kim et 

al., 2003), and it was compared with measurement 
(Hwang and Kim, 2004). 

The thin-shell  approach is known to yield 

reasonable results as long as the wall thickness is 

small relative to the radius and the wavelength is 

large compared to the wall thickness. It is neces- 

sary to find the range of  parameters for which the 
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thin-shell approach for the analysis of elastic 

wave propagation in a pipe is valid. Here, the 

validity and limitation of the thin-shell approach 

is presented by comparing the phase velocities 

calculated by this approach with those calculated 

by the thick-cylinder approach. 

The major approximations in the analysis 

were as follows : (1) the pipe is perfectly circular, 

concentric, and infinitely long, (2) the liquid in 

the pipe is ideal, that is inviscid, compressible, 

irrotational, and stationary, (3) transverse shear 

stresses and bending and twisting moments are 

neglected, and (4) the pipe is not pre-stressed, 

that is, static stresses due to liquid pressure, pipe 

weight, and mounting are neglected, and all 

stresses in the pipe are the result of the induction 

of the elastic waves. 

2. Thick-Cylinder Approach 

In order to compare with the thin-shell ap- 

proach, the equations of the thick-cylinder ap- 

proach are briefly reviewed here. Consider elastic 

waves propagating in a pipe having an inner 

radius a and an outer radius b as shown in Fig. 

1. The pipe has a wall thickness h = b - a  and a 

mean radius R =  ( a + b ) / 2 .  

Fig. 1 Schematic diagram of a pipe showmg radH 
and coordinates 

2.1 Analysis procedure 
Radial and axial displacements Ur and uz in a 

pipe and Wr and wz in a liquid are used to de- 

scribe the axisymmetric motion of the waves. 

Normal stress ar and shear stress rre in the pipe 

are expressed in terms of the displacement com- 

ponents Ur and uz as follows (Achenbach, 1975): 

. ~ O u r  . u,. , 3 u z \ + 2 G 3 U ,  (ia) 

rre = G [ OUr q_ ~Ue 
\ 3z Or ] (Ib) 

Here, ~ and G are the Lame elastic constants and 

G: is the shear modulus. Similarly, normal stress 

aw in the liquid is expressed in terms of the dis- 

placement components Wr and w, as follows : 

O.w=/~w(~rr + Wry + ~ _ )  ('C) 

Coupling of the variables in the equations of mo- 

tion can be avoided by introducing displacement 

potentials ¢, #'0, and ew, which are related to the 

displacement components as follows (Achenbach. 

1975): 

c~¢ ~¢to ( 2a ) 
Ur= ~r Oz 

z - - ~ - - - ~ - - -  T (25) 

w~-- ~-~r w (2c) 

0¢w (2d) Wz-- 

For the waves traveling in the z direction, har- 

monic wave mot,on is assumed to have the solu- 

tion of the following form: 

¢ ( r .  z, t ) = q ) ( r ) e x p [ i ( k z - w t ) ]  (3a) 

#o(r,  z, t ) = ~ ' ( r ) e x p [ i ( k z - w t ) ]  (3b) 

ew(r ,  z, t ) = q ) w ( r ) e x p [ i ( k z - w t ) ]  (3c) 

where co is the circular frequency and k is the 

wavenumber. 

The uncoupled equations of motion are re- 

written as follows: 

~"  + l  ¢ '+q,2 ~ = 0  q Z = ~ - k Z  (4a) 
r GL 

{~f""}- " ~Ff''~/t 2 ' '~ ~ ) ' = 0  2__ (-t)2 --2 (4b) q T - 7 ~ ]  - - - -  qr c2 e 

Cw 

' 2 where CL=4(A+ G ) / p  and Cr'=4'G/p are, re- 

spectively, the velocities of longitudinal and trans- 

verse waves in pipe material and cw is the veloci- 

ty of a longitudinal wave in liquid. Here p re- 

presents the mass density. Equations (4a)-(4c) 
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are typical Bessel equations and their solutions Table 1 

have the following form : 

@(r) =BJo(q ,r )  +B2Yo(qLr) (5a) 

~( r )  =BJ~(qrr)  +B, Y~ (qr r )  (5b) 

@w(r) =BsJo(qwr) (5c) Elastic 

The following boundary conditions are applied property 

on the outer and inner surface of the pipe : 

at r = b ,  dr=O and rrz=0 (6a,b) 
Wave 

at r = a ,  ar=dw, r,-z=0, and Ur=Wr (6c,d,e) velocity 

Finally a system of equations is obtained as fol- 

lows (Sinha, 1992; Cho and Rose, 1996; Rose, 

1999): ~o . . 

[ D . ] { B : } = { 0 }  i , j = 1 , 2 , . . . , 5  (7) 

where { Bj } consists of the unknown constants in 

Eq. (5) and the elements D ,  of the matrix [D,~-] 

are listed in the Appendix. When the pipe is 

empty, the equations are simplified with i, j = l .  

2 , 3 , 4 .  

2 .2  P h a s e  v e l o c i t y  

For nontrivial solutions of the unknown am- 

plitude B~, the elements D ,  of the matrix [ D , ]  

must satisfy the following characteristic equation : 

det[ D;, 1=0 (8) 

The solution of Eq. (8) is the wavenumber k, 

which may be a complex number (k=kR+ikz). 
The imaginary part kz represents the attenuation. 

The phase velocity c is obtained from the real 

part kR as: 

09 
C =--~R (9) 

As a demonstration, phase velocity of the wave in 

an aluminum pipe was calculated with material 

properties listed in Table 1 and displayed as a 

function of frequency for various values of thick- 

ness-to-radius ratio h /R  in Fig. 2. The phase 

velocity c was normalized by the velocity Cb = 

~'-E/p of a longitudinal wave in a thin bar and 

the frequency co was normalized by c J R .  The 

numbers 1. 2, 3, and 4 in the graph mean the 

modes. The curves show the well-known fact that 

the phase velocity c approaches the transverse 

Elastic properties of alummum ( 1100-H 14) 
and wave velocities calculated from the 
elastic properties 

Property Value 

Mass density, p 
Young's modulus, E 
Shear modulus, G 
Lame constant. A 
Pomsson's ratio, v 

Longltudmal wave, c, 
L-wave in a plate, cp 
L-wave in a bar, cb 
Transverse wave, cr 

2,710 kg/m 3 
70 GPa 
26 GPa 
58.5 GPa 
0.346 

6,385 m/s 
5,417 m/s 
5,082 m/s 
3.097 m/s 

, . . . , . . ; . ,  . . . . .  , 

> 

Q. 
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0 o  
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i " " 
\ \ ' .  . .  .. 

L 
i '  " \  "~- "  " "" " "  -- 

' . 1 . .  - . z - : - - - :  

r .  / 

Fig.  2 

c r , ' G ,  

¢ r ' ~ c  

- -  h , *R  = 0 133  

. . . . .  h / R = 0 2 0  
- - -  r dR  = 0 30  

. . . .  i . . . .  m . . . .  i . . . .  ~ . . . .  J . . . .  

10  20  30  

No rma l i zed  F requency ,  ( o R / c t ,  

Dispersion curves of the longitudinal waves 
in an empty pipe, calculated for various h/R 
ratios by the thick-cylinder approach 

wave velocity Cr as the frequency co goes to 

infinity. The focus here is to understand the dis- 

persion curves at low frequency, and modes 1 and 

2 are considered in the next sections. It is noted 

that at low frequency the phase velocity of the 

axisymmetric longitudinal wave shows little dif- 

ference according to the thickness of the pipe. 

3. Thin-Shel l  Approach 

For the pipe shown in Fig. 1, the pipe wall is 

treated as a thin shell. Shell theory has the benefit 

of providing simpler expressions than the ones 

generated using the full equations of linear elas- 



1090 Jin Oh Kim and Joseph L. Rose 

ticity described in the previous section. 

3.1 Modeling 
In the special case of an axisymmetric, cylin- 

drical membrane shell, the general thin-shell the- 
ory (Junger and Feit, 1986) is simplified by eli- 
minating the terms representing circumferential 
variations to : 

~Uz V Ol~r 1 - -  V 2 i ~ U z  

-g2 ~ - R - O £ - -  cg at ~ (JO) 

and 

Ur U OUz q( l - -uz )  - - l - - u z  02Ur (11) 
R 2 R Oz ~ phc~ c~ Ot 2 

In the above q is the radial load and u is the 
Poisson's ratio of the pipe material. 

The liquid pressure p satisfies the wave equa- 
tion (Kinsler et al., 2000): 

o~ib p 1 o3i0 ~ o ~ P  I o~p (12) 
Or 2 r - f i r  Oz 2 c~ Ot 2 

where cw is the sound velocity in the liquid 
medium. The radial pressure q in Eq. (11) equals 
the pressure p at r = a ,  that is : 

q=PI,=Q (13) 

Once the pressure equation is solved, the radial 
liquid velocity Vr can be computed utilizing the 
linearized radial momentum equation : 

OVr 1 o3p (14) 
Ot pw Or 

At the surface of a pipe: 

OUr r=a-- ~Ur (15) 
Ot Ot 2 

Equations (14) and (15) are combined to obtain 
the relation between Ur and p :  

0p ~=, o~u~ (16) 
Or = - P "  Ot 2 

3.2 Solutions 
Solutions for the wave propagation are sought 

as the following forms: 

and 

u~(z, t ) = O ~ e x p [ i ( k z - c o t ) ]  (17a) 

u~(z, t ) = O ~ e x p [ i ( k z - c o t ) ]  (lVb) 

p(r ,  z, t ) = P ( r ) e x p [ i ( k z - c o t ) ]  (17c) 

Upon substituting Eq. (17c) in Eq. (12), a typi- 
cal Bessel equation is obtained for the pressure 
amplitude P ( r ) .  

d2P ~ - l  d P  +q~P=O (18) 
dr  2 r ar  

where qw was defined in Eq. (4c). 
Equation (18) admits a solution of the form : 

P(r )  =C1]o(qwr) +C2Yo(qwr) (19) 

Ill Eq. (19) ,]'o and Y0 are Bessel functions of 
the first kind and of  the order 0. ]0(0) is finite 
while Yo(O) is infinite. Thus, to assure bounded 
solutions at r = 0 ,  C2 is set to 0. 

Since 

~ r=a=C, dJ°(q~r) r=a 
dr  (20) 

= -- Clq~J1 (qwa) 

the boundary condition (16) can be rewritten as: 

P ]~=~= CJo(qwa) e x p [ i ( k z -  cot) ] 
Jo(qwa) O2Ur (21) 

=Pw q j t ( q ~ a )  Ot 2 

Equation (21) includes the apparent mass of the 
liquid per unit area (Kim ct al., 2003b): 

Jo ( q~a ) 
M (q~a) = - Pw q~j~ (qwa) (22) 

Upon expressing the liquid pressure in terms of 
the radial displacement of the wall, Eq. (1 I) can 
be rewritten as: 

(23) R 2 R Oz = k  oh ] c~ Ot 2 

The above expression suggests that the effect of 
the liquid increases as the solid density p and the 
shell thickness h decreases. 

Upon substituting Eqs. (17a) and (17b) into 
Eqs. (10) and (23) and assuming a ~ R ,  one ob- 
tains : 
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( w ]2]U ik u [ k 2 - ( l - v Z ) \ - - ~ b  / j z - -  -~-/.~r----0 (24a) 

• v - ] , ,  

3.3 Phase  velocity 

In general, the axial wavenumber k can be a 

complex number, and the imaginary part repre- 

sents the attenuation. When a pipe is surrounded 

with a liquid, the elastic wave in the pipe is leaky 

and the attenuation is not negligible. Since this 

work considers a liquid confined in a pipe, k is 

assumed to be real, and k = a ) / c .  Requiring the 

equations to admit non-tr ivial  solutions, one can 

obtain a characteristic equation : 

oh / \  cb / 

M(qwR) 2 erR 2 c 2 
(25) 

Equation (25) represents the dispersion relation 

between the normalized phase velocity c / c b  and 

the normalized frequency a)R/cb. 

When the pipe is in vacuum (or in air) ,  M = 0  

and Eq. (25) can be solved explicitly to obtain 

the normalized phase velocity c / cb  as a function 

of the normalized frequency oJR/cb: 

c _ V /  1 -  ( w R / c b )  z 
Cb "1_ ( l _ v 2 )  (coR/cb) 2 (26) 

4. Results  and Discussion 

Based on the solutions derived by the thick- 

cylinder and by the thin-shell  approaches, phase 

velocities of the axisymmetric longitudinal wa- 

ves were calculated for an empty pipe and for a 

water-filled pipe. The material properties of the 
aluminum pipe (Beer and Johnston, 1995) are 

listed in Table 1 with water density of 998 kg/m 3 

and wave velocity cw in water at 1,481 m/s. 

4 .1  F o r  a n  e m p t y  p i p e  

The phase velocity c of a longitudinal wave in 

an empty pipe was calculated from Eqs. (8) and 

(9) for the thick-cylinder approach and from Eq. 

2 0  

> 
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m 
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0 0  

Fig .  3 

, I ' ' ' . . . .  i . . . .  b . . . .  
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. . . . .  o/hnaer (h/R = 0 20) 

- -  ¢yhnder (h/Ft = 0 30) 
th,n she 

'-L: " . . - . . - - -  _.2. - LL- -..-" --- 

cJc~ 

2 

N o r m a h z e d  F r e q u e n c y ,  ~ R / c  D 

Comparison of the dispersion curves cal- 
culated by the thick-cylinder approach and 
by the thin-shell approach for an empty pipe 

(26) for the thin-shell  approach. The phase ve- 

locity c normalized by the propagation velocity 

cb of a longitudinal wave in a thin bar was dis- 

played in Fig. 3 as a function of  the normalized 

frequency o)R/cb. The numbers 1 and 2 in the 

graph mean the modes. In Fig. 3, dashed lines 

present the dispersion curves for various h / R  

ratios obtained by the thick-cylinder approach, 

and the solid lines represent the dispersion curves 

obtained by the thin-shell  approach. Comparison 

of the two results reveals that the thin-shell  ap- 

proach is valid within a limited range of frequen- 

cy. Thin-shell  approach yields only two modes. 

The first mode calculated by the thin-shell  

approach is valid when the frequency ~o is less 

than the th in-bar  wave velocity cb divided by the 

mean radius R of  the pipe. The phase velocity c 

of the first mode approaches cb as the frequency 

or the pipe radius decreases to zero. It is un- 

derstood from the comparison that when the fre- 

quency or the pipe radius is small (aJR/cb< 1) 

the thickness deformation of the pipe is negligible 
as if it were a thin shell. It is also understood that 

when the frequency or the pipe radius is very 

small (o)R/cb<<l) the wave motion in the pipe is 

similar to that in a thin bar. 

The second mode calculated by the thin-shell  

approach is valid when the frequency a) is larger 
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than the th in-bar  wave velocity cb divided by the 

mean radius R of the pipe. As observed in Eq. 

(26), it is shown that the cut-off  frequency of the 

second mode is cp/R, where c p = ~ / E / p ( l - u  2) 

is the propagation velocity of  a longitudinal wave 

in a thin plate. The phase velocity of the second 

mode approaches ci,, as the frequency or the pipe 

radius becomes very large, which is anticipated 

from Eq. (26). As shown in Fig. 2, the phase 

velocity of the second mode maintains at cp in 

the range of  low frequency and drops to c r  in 

higher frequency. The second mode calculated by 
the thin-shell  approach is valid in the frequency 

range where the phase velocity is maintained at 

cp. Finally, the thin-shell approach does not 

yield the dispersion curves of the modes higher 

than the second. 

4.2 For a water- f i l l ed  pipe 

The phase velocity c of a longitudinal wave in 

a water-filled pipe was calculated from Eqs. (8) 

and (9) for the thick-cylinder approach and from 

Eq. (25) for the thin-shell  approach. The phase 

velocity c normalized by the propagation velocity 

cb of a longitudinal wave in a thin bar was dis- 

played in Fig. 4 as a function of  the normalized 

frequency caR/cb. The numbers I and 2 in the 

20 

~ ~o 

E 
05 

O0 

Fig. 4 

i 
. . . .  ~ . . . .  i . . . .  , . . . .  J . . . .  , . . . .  

1 2 3 

Normahzed Frequency, ( o l ~ C  o 

Comparison of the disperslon curves cal- 
culated by the thick-cylinder approach and 
by the thin-shell approach for a pipe con- 
taining stationary water 

graph mean the modes and 2a, 2b, and 2c mean 

the branches of the second mode. In Fig. 4, 

dashed lines represent the dispersion curves for 

various h / R  ratios obtained by the thick-cylin- 

der approach, and the solid lines are the dis- 

persion curves obtained by the thin-shell  ap- 

proach. Comparison of the two results reveal that 

the thin-shell  approach is valid within a limited 

range of frequency. 

In contrast to the case of  the empty pipe (Fig. 

3), Fig. 4 exhibits a large number of modes. The 

presence of a large number of  modes could be 

anticipated based on the large number of bran- 

ches of  the apparent liquid mass in Eq. (22) 

(Kim et al., 2003b). The phase velocities of the 

second and higher modes approach cp in some 

frequency range and then cw in higher frequency 

range. 

5. Conclusion 

The phase velocities of the axisymmetric longi- 

tudinal wave propagating in an elastic pipe were 

calculated by the thin-shell  approach and com- 
pared with those calculated by the thick-cylinder 

approach. The two results showed good agree- 

ments for the first mode of  the wave in the cir- 

cular frequency range less than the longitudinal 

th in-bar  wave velocity divided by the mean radi- 

us of  the pipe. The two results for the second 

mode also showed good agreement in the range 

from the cut-off  frequency up to the frequency 

where the phase velocity is maintained at the 

longitudinal thin-plate velocity. The validity and 

hmitation of the thin-shell  approach was quanti- 

tatively investigated in this paper. 

In contrast to the case of the empty pipe, where 

only two modes were obtained and the first mode 

was calculated in a limited frequency range, the 

results for the l iquid-fil led pipe exhibits a large 

number of modes due to the large number of 

branches of the apparent liquid mass. Several of 

the lowest modes of the waves in a l iquid-fil led 
pipe were calculated for various pipe thicknesses 

in a wide frequency range. In the low frequency 

range, the thin-shell  approach is valid for rea- 
sonable pipe thicknesses when considering the 
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effect of a stationary liquid on the wave propaga- 

tion in a pipe. The results of this paper support 

the possibility of using the thin-shell  approach in 

the theoretical prediction of the effect of fluid 

flow on the wave propagation in a pipe. 
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Appendix 

The elements of  the matrix [D,:] in Eq. (8) are 

as follows : 

Dn = -- [A(q 2 + k  2) + 2Gq[]Jo(qzb) 

+ 2G-~-]~ (qLb) 

D,2 = -- [ A(q 2 + k  2) + 2 G q  2 ] Yo(qLb) 
qL 

+ 2 G --b-- Y~(qLb) 

D~3 = -2 iGk[qr ]o (qrb )  1 --~l, (q~b) ] 

D , 4 = - 2 i G k [ q r Y o ( q r b ) - ~  Y~(qrb) ] 

D i s = 0  

D21 = - 2 i G k q t J l  (qLb) 

l)22 = - 2iGkqL Y~ ( qLb ) 

D23 = G (k 2 - q2) Jl (qLb) 

D 2 4 = G ( k 2 - q  2) Yl(qrb) 

D2s=0 

D3t= -- [A(q 2 + k  2) +2Gq2,]Jo(qLa) 

+ 2G ~ - J ~  (qLa) 

D32 = -- [/l(q z ' l -k 2) + 2 G q ,  2 ] Yo(qLa) 

+ 2 G ~ -  Y~(qLa) 

D33=--2iGk[qT]o(qra) - - I  J , (qra)  ] 

I 
Y~ (qra)  ] D34 = - 2 iGk [q r  Yo (qra)  - - ~  

.J 

Dss=Aw(q2 + k2) Jo(qwa) 

D,, = - 2 iGkq j~  ( qLa) 

D42---- - 2iGkqL ~ ( qLa) 

D,3 = G ( k 2 - q2) 1, ( q ra) 

D44=G(k2-q~)  Y~(qra) 

D4s=0 

Dsl = -- qLJl ( qLa) 

Ds2 = -- qL Yl ( qLa) 

D53 = -- ik]l (qra)  

Ds4 = - ik Y~ (qra) 

Dss = qJ~  (qwa) 

where qL, qr, and qw were defined in Eq. (4). 
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